
Algebra of Logic Programming

Silvija Seres Michael Spivey Tony Hoare

Oxford University Computing Laboratory

Wolfson Building� Parks Road� Oxford OX� �QD� U�K�

Abstract

A declarative programming language has two kinds of semantics� The

more abstract helps in reasoning about speci�cations and correctness�

while an operational semantics determines the manner of program exe�

cution� A correct program should reconcile its abstract meaning with its

concrete interpretation�

To help in this� we present a kind of algebraic semantics for logic pro�

gramming� It lists only those laws that are equally valid for predicate

calculus and for the standard depth��rst strategy of Prolog� An alterna�

tive strategy is breadth��rst search� which shares many of the same laws�

Both strategies are shown to be special cases of the most general strat�

egy� that for tree searching� The three strategies are de�ned in the lazy

functional language Haskell� so that each law can be proved by standard

algebraic reasoning� The laws are an enrichment of the familiar categorical

concept of a monad� and the links between such monads are explored�

� Introduction

In an earlier paper ��� we have proposed a simple and direct embedding of the
main logical constructs of Prolog in a lazy functional language� Its use of lazy
lists gives rise to a natural implementation of the possibly in�nite search�space
and the depth��rst search strategy of Prolog� We call this the stream model

of logic programming� We have described in ��� how the embedding can be
changed to implement breadth��rst search by lifting the operations to streams
of lists� where each list has one higher cost that the predecessor� we call this the
matrix model� In this paper we o	er a third� more
exible model based on lists
of tree which accommodates both search strategies� we call this the forest model
of logic programming�

We therefore have three di	erent implementations of a logic programming lan�
guage� In comparing their logical and computational properties we concentrate
on those algebraic laws which are shared in all three execution models� and in
this sense the three models prove to be strongly consistent with each other and
with the declarative reading� We use category theory to specify how the three

�

models are related as semi�distributive monads� We de�ne three such monads
� extensions of the stream� matrix and forest monads � that satisfy certain
laws and that capture each of the computation models� Then we claim the exis�
tence of unique mappings between the monad corresponding to the most general
model and the other two monads� The two mappings correspond exactly to the
depth��rst and breadth��rst traversal of the search tree of a logic program�

The embedding of logic into functional programming is achieved by translat�
ing each primitive to a function or an operator� In this manner we can sepa�
rately implement the logic operators and the search�control operators� so this
is a realisation of Kowalskis slogan that programs are logic plus control� Our
implementation is arguably the simplest possible formalisation of di	erent oper�
ational semantics of logic programming and can be thought of as an executable
operational semantics for logic programming�

We describe the concrete implementations in the functional language Haskell�
for three reasons� it is rewarding to have a concrete� working prototype to ex�
periment with� the functional languages are easy to interpret in terms of the
category theory� and the proofs of the proposed algebraic laws only use the
standard algebra of functions� As an alternative to Haskell any lazy language
�with the Hindley�Milner type system� and ��abstractions would do� Our im�
plementation shows that any such functional language contains much of the
expressive power of functional logic languages� but to achieve the full power of
these languages further extensions �e�g� typed uni�cation� are needed�

In section � we describe the ideas behind our translation of logic programs to
functional ones� and in sections �� � and � we outline the implementations of
three di	erent execution models of logic programs� one using depth��rst search�
one using breadth��rst search and one model accommodating both search strate�
gies� In section � we show how these three models can be understood in terms
of monads in category theory� and in section � we prove the existence of shape�
preserving morphisms between the forest model and the other two� Except in
these two sections� we do not assume any knowledge of category theory� but
some basic knowledge of functional programming is needed�

� Functional Interpretation of Logic Programs

In our embedding of logic programs into a functional language� we aim to give
rules that allow any pure Prolog program to be translated into a functional
program with the same meaning� To this end� we introduce two data types
Term and Predicate into our functional language� together with the following
four operations�

�� k � Predicate� Predicate� Predicate�
�
� � Term � Term� Predicate�

� � �Term � Predicate�� Predicate�

�

The intention is that the operators � and k denote conjunction and disjunction
of predicates� the operator

�
� forms a predicate expressing the equality of two

terms� and the operation � expresses existential quanti�cation� In terms of logic
programs� we will use � to join literals of a clause� k to join clauses�

�
� to express

the primitive uni�cation operation� and � to introduce fresh local variables in a
clause�

These four operations su�ce to translate any pure Prolog program into a func�
tional program� As an example� we take the well�known program for append�

append���� Ys� Ys� �� �

append��X	Xs�� Ys� �X	Zs�� �� append�Xs� Ys� Zs��

As a �rst step� we remove any patterns and repeated variables from the head
of each clause� replacing them by explicit equations written at the start of the
body� The head of each clause then contains only a list of distinct variables�
By renaming� we can ensure that the list of variables is the same in each clause�
We complete the translation to Haskell by joining the clause bodies with the
k operation� the literals in each clause by the � operator� and existentially
quantifying any variables that appear in the body but not in the head of a
clause�

append�Ps �Qs �Rs� �

�Ps
�
� nil �Qs

�
� Rs� k

��X �Xs �Ys � Ps
�
� cons�X �Xs�� Rs

�
� cons�X �Ys��

append�Xs �Qs �Ys���

Here nil is used for the value of type Term representing the empty list� and cons

is written for the function on terms corresponding to the Prolog constructor �	��
The function append de�ned by this recursive equation has type�

append � �Term�Term�Term� � Predicate�

This translation to a functional program obviously respects the declarative se�
mantics of the original logic program� the operators �� k�

�
� and � have as their

main role to make the declarative semantics of the logic program explicit� We
will de�ne and implement these four basic operators such that the translation
also respects the execution semantics of the logic program� In fact� we show
that this translation can be adapted to three di	erent execution models�

The four operators can be divided into two groups� we call � and k the structur�
ing operators� and

�
� and � the uni�cation operators� The choice of a concrete

scheduling strategy a	ects mainly the basic type of predicates and the struc�
turing operators� so the focus of this paper will be on the implementation and
analysis of these� A closer semantical study of the uni�cation operators is a
task we pursue in another paper� they have interesting monotonicity properties
and are important in our study of typed uni�cation� program transformation�
functional logic programming and other topics�

�

The implementation details of all the four operators for both the depth��rst and
breadth��rst computation models are described in ���� We now give an outline
of the di	erences between these two computation models� and in section � we
describe a model that accommodates both search strategies�

� The Depth�First Search Strategy

The key idea of all the three implementations is that each predicate is a function
taking an �answer �that represents the state of knowledge about the values of
variables at the time the predicate is solved�� and producing a collection of
answers� where each answer corresponds to a solution of the predicate that is
consistent with the input� An answer is in principle just a substitution� i�e� an
associative list mapping each value to the term that is to be substituted for it�

The representation� or type� of the collections of answers is the main di	er�
ence between the three models� In the depth��rst model� the set of answers is
represented by a lazy list� or stream��

type Predicate � Answer � Stream Answer �

The k operator computes the answers to the disjunction of two predicates by
concatenating the streams of answers returned by its two operands� The �
operator computes the answers to the conjunction of two predicates by a pairwise
uni�cation of the answers from the two streams computed by its two arguments�
It combines all the answers from its two arguments by �rst applying the left�
hand predicate to the incoming answer� followed by applying the right�hand
predicate to each of the answers in the resulting stream� Finally� to preserve
the types� concatenation of the resulting stream of streams into a single stream
is needed� The de�nitions of k and � are thus�

�p k q� x � q x �� q x � ���

p � q � concat �map q � p� ���

We also de�ne constant predicates true and false � one corresponding to imme�
diate success and the other to immediate failure�

true �� Predicate false �� Predicate

true x � �x �� false x � � ��

A series of interesting algebraic properties can be proved for the operators �
and k� The proofs are based on equational reasoning using the de�nitions of
the operators� the associativity property of functional composition ��� and the

�For clarity� we use the type constructor Stream to denote in�nite streams� and List to

denote �nite lists� In a lazy functional language� these two concepts share the same imple�

mentation�

�

de�nitions of the standard functions map� concat and their following well�known
properties �see �����

map �f � g� � �map f � � �map g�� ���

map f � concat � concat �map �map f �� ���

concat �map concat � concat � concat � ���

The laws are listed below� The operator � is associative ��� with unit element
true ���� The predicate false is a left zero for � ���� but the � operator is strict
in its left argument� so false is not a right zero� The k operator is associative
��� and has false as its unit element ����� The � operator distributes through
k from the right �����

�p � q� � r � p � �q � r�� ���

p � true � true � p � p� ���

false � p � false� ���

�p k q� k r � p k �q k r�� ���

p k false � false k p � p� ����

�p k q� � r � �p � r� k �q � r�� ����

Other identities that are satis�ed by the connectives of propositional logic are
not shared by our operators because in our stream�based implementation� an�
swers are produced in a de�nite order and with de�nite multiplicity� This be�
haviour mirrors the operational behaviour of Prolog� For example� neither k nor
� are idempotent because the number of answers to p k p and to p � p is not
the same as the the number of answers to p except in the trivial cases�

Some of the missing laws could be reestablished if bags or sets were used to
collect the answers� For example� if we used bags instead of streams� the order
of answers would not matter� In that case both � and k would become com�
mutative� and � could distribute through k also from the left� If sets were used
instead� � and k would in addition become idempotent� The problem with using
bags or sets is that in the in�nite case their equality cannot be algorithmically
de�ned� Furthermore� some other standard laws from propositional logic� for
example the distributivity of k through �� or false being a right zero for k� could
be established as inequalities if an ordering on predicates was used�

We can also de�ne the predicate operators not and cut �

not �� Predicate � Predicate cut �� Predicate � Predicate

not p � true if p �� false� cut p x � � � if p x �� � �

j � head �p x � � otherwise�

The cut operator de�ned here does not exactly correspond to the cut operator
in Prolog� because we have made it into an operator on predicates rather than
a single predicate like in Prolog� This possibly in
uences the way cut behaves

�

with respect to backtracking� As compensation for our lack of faith to Prolog�
we can de�ne a set of algebraic properties� useful for optimising purposes among
others�

cut �cut p� � cut p� ����

cut �false� � false� ����

cut �p � q� � cut �p � �cut q��� ����

cut �p k q� � cut ��cut p� k q�� ����

not �not �not p�� � not p� ����

not �p k q� � �not p� � �not q�� ����

The operator cut is idempotent ����� and has false as its zero element ����� It
does not distribute through � nor k� but it does satisfy the equations ���� and
����� The operator not is not idempotent� but does satisfy ����� Only one of
the De Morgan laws holds �����

� The Breadth�First Search Strategy

In a model that allows breadth��rst search� we need to maintain the information
about the computational cost for each answer� The cost of an answer is measured
by the number of resolution steps required in its computation� Therefore� the
predicates in our breadth��rst model return a stream of bags�� or a matrix� of
answers� Each bag represents the �nite number of answers reached at the same
depth� or level� of the search tree� All such bags are �nite because there are only
a �nite number of branches in each node in the search tree� so the bag equality
in this case is always computable� Intuitively� each successive bag of answers in
the stream contains the answers with the same computational �cost�� The type
of Predicate is thus�

Predicate �� Answer � Matrix Answer �

type Matrix a � Stream Bag a�

The bookkeeping of the resolution costs for each of the answers to a predicate
is implemented by the function step� with type Predicate � Predicate � and the
de�nition of each predicate implementation needs to be changed to perform a
call to step on the outermost level� In the depth��rst model� step is the identity
function on predicates� because the cost of answers is irrelevant� In the breadth�
�rst model it increases the cost of computation of the predicate by one� It does
this by shifting all the bags of answers one position to the right in the main

�If lists were used instead of bags� the de�nite ordering of answers would imply the loss

of associativity for the � operator in this model� The underlying implementation of bags

and lists is same in a functional language� but we use the Bag type constructor to stress the

semantical di�erence� and we use bag equality for all our algebraic laws�

�

stream�

step p x � � � � �p x ��

In the breadth��rst model� the implementations of the operators k and � need
to be adapted to preserve the cost information that is embedded in the input
matrices� The k operator simply zips the two matrices into a single one� using
the function zipwith which concatenates all the bags of answers with the same
cost and returns a single stream of these new bags� The � operator has to
add the costs of its arguments� the idea is �rst to compute all the answers
to p� then map q on each answer in the resulting matrix by the matrix�map
function mmap� and then to use function shu�e to
atten the resulting matrix
of matrices to a single matrix� according to the cost�

�p k q� x � zipwith ���� �p x � �q x �� ����

p � q � shu�e �mmap q � p� ����

The function mmap is simply a composition of map with itself� and the function
zipwith is a generalisation of the standard function zipwith such that it does not
stop when it reaches the end of the shortest of its two argument streams� The
implementation of shu�e is too technical to be included here� please see ��� for
details� From the de�nitions of these functions it can be proved by structural
induction on the matrices that they enjoy the following algebraic properties�

mmap �f � g� � �mmap f � � �mmap g�� ����

mmap f � shu�e � shu�e �mmap �mmap f �� ����

shu�e �mmap shu�e � shu�e � shu�e� ����

zipwith f �zipwith f l� l� � l� � zipwith f l� �zipwith f l� l� �� ����

mmap f � zipwith g l� l� � zipwith g �mmap f l� � �mmap f l� �� ����

shu�e � zipwith ���� l� l� � zipwith ���� �shu�e l� � �shu�e l� �� ����

The law ���� requires that f is associative� and the law ���� holds if f and g

commute� For these equalities to hold it is necessary to interpret the equality
sign in the laws as equality of streams of bags rather than a stream equality�

The predicate false in this model has the same implementation as in the stream
model� it has no answers at any cost level so it is simply the empty stream � ��
The predicate true has to be lifted to matrices� where it returns its input answer
as its only answer at level �� and has no other answers� The predicate operator
not stays the same as in the stream model� it returns true if its input predicate
equals false � while cut needs to be lifted to return the matrix containing only
the �rst element in the �rst non�empty bag�

true x � � �x � ��

cut p x � � � head � concat �map �rst �p x � � ��

where �rst returns the singleton list containing the �rst element of its input list
if it is non�empty� or an empty list otheriwse�

�

All the algebraic laws for true� false � � and k listed in the previous section hold
in this model too� and all the laws for not and cut hold except for ��������
The proofs of these laws are again based on equational reasoning� using the
de�nitions of the operators� the associativity of functional composition� and the
properties �������� For example� in the proof of the associativity of k� we use the
associativity property of zipwith ����� and in the proof of the right�distributivity
of � through k we use the distributivity properties of mmap and shu�e through
zipwith �������� As a concrete example we show the proof of the associativity
of � in this model�

�p � q� � r

� shu�e �mmap r � shu�e �mmap q � p by ����

� shu�e � shu�e � �mmap mmap r� �mmap q � p by ����

� shu�e �mmap shu�e � �mmap mmap r� �mmapq � p by ����

� shu�e �mmap �shu�e �mmap r � q� � p by ����

� p � �q � r� by ����

As in the previous model� the additional properties of the propositional logic
operators could be established as equalities on bags or sets �rather than equal�
ities on streams of bags�� or as inequalities using the subsumption ordering on
predicates� For the same constructive reasons as before� we choose not to use
these�

� The General Model

In the model that allows the use of both depth��rst and breadth��rst search the
predicates can be modelled by functions returning lists of trees of answers� or
forests of answers� The type of Answer is same as before� Each inner node in
a tree can have an arbitrary number of children� this can be implemented by
collecting all the children nodes in a new forest�

type Predicate � Answer � Forest Answer �

type Forest a � List Tree a�

data Tree a � Leaf a j Fork �Forest a��

The cost of an answer corresponds to its depth in the search tree� Consequently�
the function step pushes all the computed answers one level down the tree by
adding a new parent node as a root� It forms a tree from the input forest of
answers and for type correctness converts this tree to a singleton forest�

step p x � �Fork �p x � ��

The implementations of k and � operators in this model are similar to the
implementations in the stream model� The k operator actually stays the same�

�

it simply concatenates the two forests of answers� and the costs do not change�
The � in the forest model is the lifting of the original � to the forest type�
The left�hand argument to � returns a list of trees� The right�hand argument
is then applied to all the answers in the resulting list � which are simply all the
leafs of each tree in the list � by the function fmap� This results in a forest of
answers at each leaf� and these are grafted into the tree by the function fgraft �

�p k q� x � p x �� q x � ����

p � q � fgraft � fmap q � p� ����

The motivation for choosing forests rather than just trees for the type of answers
is that k and � cannot be cost�preserving on trees� If simple trees were used�
p k q would have to combine their trees of answers by inserting them under a
new parent node in a new tree� but that would increase the cost of each answer
to p k q by one� For example� the answers to p k no would in the tree model cost
more than the answers to p� which would be wrong � the number of resolution
steps performed is the same� Also� in the tree model the k operation would not
be associative�

The following de�nitions of the auxiliary functions graft � graft� � fmap and tmap

are needed in the proofs in later sections�

fgraft � concat �map graft� � ����

graft� �Leaf xf � � xf � ����

graft� �Fork x� � � �Fork �fgraft x� � �� ����

fmap f � map �tmap f �� ����

tmap f �Leaf x � � Leaf �f x �� ����

tmap f �Fork xf � � Fork �fmap f xf �� ����

From these de�nitions it can be proved by structural induction that fmap and
fgraft both distribute through �� and that they share the standard properties
of the functions map� concat and functional composition�

fmap �f � g� � �fmap f � � �fmap g�� ����

fmap f � fgraft � fgraft � fmap �fmap f �� ����

fgraft � fgraft � fgraft � fmap fgraft � ����

As an example we give the proof of ����� The function fgraft is de�ned through
indirect recursion with the function graft� � so a proof of ���� requires a simul�
taneous inductive proof of the equation �����

fgraft � graft� � graft� � tmap fgraft � ����

�

Assuming that ���� holds� we prove �����

fgraft � fgraft

� concat �map graft� � concat �map graft� by ����

� concat � concat �map �map graft� � �map graft� by ���

� concat �map concat �map �map graft� � �map graft� by ���

� concat �map �concat �map graft� � graft� � by ���

� concat �map �fgraft � graft� � by ����

� concat �map �graft� � tmap graft� by ����

� concat �map graft� �map �tmap graft� by ���

� graft � fmap graft by �������

To prove ����� we need to look at both inductive cases� The proof of the base
case� fgraft �graft� Leaf xf � � graft� �tmap fgraft xft�� follows trivialy from the
de�nitions ���� and ����� In the induction case� if xft � Fork xf and the induc�
tion hypothesis ���� holds of xf � we �nd�

fgraft � graft� �Fork xf �

� fgraft �Fork �fgraft xf � � by ����

� concat �map graft� �Fork �fgraft xf � �� by ����

� concat � graft� �Fork �fgraft xf �� � by �map�

� � graft� �Fork �fgraft xf �� � by �concat�

� �Fork �fgraft �fgraft xf �� � by ����

� �Fork �fgraft �fmap fgraft xf �� � by ����

� graft� �Fork �fmap fgraft xf �� by ����

� graft� � tmap fgraft �Fork xf � by ����

The predicate operator not stays the same as in the stream model� it returns
true if its input predicate equals false � Since the search strategy is not speci�ed
for this model� there can be several di	erent de�nitions of the cut operator such
that it is idempotent� monotonous and returns the �rst answer relative to some
search strategy� Once again� the predicate false in this model has the same
implementation as in the stream model� it has no sub�trees� so it always returns
the empty stream � �� The predicate true has to be lifted to forests� where it
returns its input answer as its only answer at level � in the �rst subtree� and
has no other answers�

true x � �Leaf x ��

The same algebraic laws for true� false � � and k hold of this model as of the
previous two� and the equalities in this case need to be interpreted as equalities
on streams of trees� The proofs are based on equational reasoning� the laws
regarding true and false follow directly from the de�nitions of the operators�

��

the associativity of k follows from the associativity of ��� the associativity of
� has a similar proof as for matrices and uses �������� and the proof of the
distributivity of � through k from the left uses the distributivity of fgraft and
fmap through ���

� The Three Monads

We have so far described implementations of three scheduling strategies for logic
programming� and we have seen that the same set of algebraic laws holds for the
structuring operators of each model� The aim of this section is to present the
mathematical framework which will help us explore and express the relationships
between our three models�

Phil Wadler has shown in ��� �� that many aspects of functional programming�
for example laziness or eagerness of evaluation� non�determinism and handling
of input and output� can be captured by the monad construction from category
theory� Here we show in a similar fashion how our models of logic programming
relate to concepts from category theory�

A monad T is a triple �mapT � unitT � joinT �� where T is a type constructor
T with an associated function mapT � and unitT and joinT are polymorphic
functions� with types�

mapT �� �a � b� � T a � T b�

unitT �� a � T a�

joinT �� T �T a� � T a�

In addition� we use idT for the identity function on each T � For such a triple
to qualify as a monad� the following equalities must be satis�ed�

mapT idT � idT � ����

mapT �f � g� � mapT f �mapT g � ����

mapT f � unitT � unitT � f � ����

mapT f � joinT � joinT �mapT �mapT f �� ����

joinT � unitT � idT � ����

joinT �mapT unitT � idT � ����

joinT �mapT joinT � joinT � joinT � ����

Taking Stream for T � the standard stream function map for mapT � the list
unit constructor ��� for unitT � and concat for joinT � one can easily verify that
�map� ���� concat� is a monad� The equations ����� ���� and ���� correspond to
the standard laws for list operators ������ the rest of the equations follow from
the de�nitions of map and concat �

The Matrix monad results from taking mmap for mapT � the matrix unit con�
structor ����� for unitT and shu�e for joinT � The equations ����� ���� and ����

��

for this monad correspond to the equations �������� and the remaining equations
can be proved from the de�nitions of the matrix functions mmap and shu�e �

Finally� the Forest monad results from taking the function fmap for mapT �
the forest unit constructor �Leaf �� for unitT and fgraft for joinT � Again� the
equations ����� ���� and ���� for this monad are the same as the equations
������� described in section �� and the remaining ones can be proved from the
de�nitions of the forest functions fmap and fgraft �

There is an alternative de�nition of a monad� where the function joinT is re�
placed by the operator �T � also called the Kleisli composition� de�ned as�

��� �� �a � T b� � �b � T c�� �a � T c�� ����

p �T q � joinT �mapT q � p� ����

The triple �mapT � unitT � �T � is a monad if the equations ������� given below
are satis�ed� These equations are implied by the equations ��������

�unitT a� � k � k a� ����

m � unitT � m� ����

m � �p � q� � �m � p� � q � ����

Conversely� the functions mapT and joinT can be de�ned in terms of �T � and
the equations ������� imply the original monad equations �������� so the two
alternative de�nitions of a monad are equivalent�

This second de�nition of a monad is particularly convenient for our purposes�
since the operator �T corresponds exactly to the de�nition of the operator �
in each of the models� and unitT corresponds to our function true in each
model� We have already seen that in all three models � is associative with unit
element true� so the laws ������� are satis�ed in the Stream� Matrix and Forest

monads� In that sense we can say that they capture the algebraic semantics of
the operator � and predicate true in our three models of logic programming�
The remaining structural parts of each model are k and false � We now formulate
the right notion of the extended monad that captures these and their properties�

In an application to our models of logic programming� we de�ne an extended

monad T� as a �ve�tuple� where T is one of Stream� Matrix and Forest monads�
trueT is the unit� and �T is the Kleisli composition in each of the monads�

T� � �mapT � trueT � falseT � kT � �T ��

such that the laws for k and false listed in section � hold� The extended monads
Stream�� Matrix� and Forest� capture the algebraic semantics of the three
di	erent scheduling strategies for logic programming�

A morphism between two extended monads is a mapping which preserves the
structure of the monads� i�e� which maps true in one monad to true in the other
and so on with false � kT and �T � We now proceed to show the existence of
monad morphisms between the third� most general� extended monad and the
other two�

��

� Relationships between the Monads

In the most general model� each query to a logic program returns a forest cor�
responding to the search tree of the query� This forest can be converted to a
stream of answers� by traversing the trees in either a depth��rst or breadth�
�rst manner� The functions dfs and bfs below� with type Forest a � Stream a �
implement these two search strategies�

The dfs function applies the auxiliary dfs� function to each tree in the list and
concatenates the resulting lists� The function dfs� returns the leaf nodes of each
tree in a depth��rst manner� by recursively calling dfs �

dfs � concat �map dfs� � ����

dfs� �Leaf x � � �x �� ����

dfs� �Fork xf � � dfs xf � ����

The bfs function needs to take account of the cost of the answers� It does this
by collecting all the answers from a same level in all the search trees of the input
forest in a same list� and by returning the lists in an increasing order of level�
The function bfs� performs the sorting of input answers with respect to their
cost� The function levels sorts the leafs of a input tree in lists by increasing
cost� and the function bfs� lifts it to forests� The auxiliary function combine

takes a list of lists� and reshu�es it by making the �rst list from all the �rst
elements in each list� the next list from the second elements etc�

bfs � concat � bfs� � ����

bfs� � � � � �� ����

bfs� xf � combine �map levels xf �� ����

levels �Leaf x � � � �x � �� ����

levels �Fork xf � � � � � bfs� xf � ����

combine � foldr �zipwith ����� � �� ����

We now show that any query results in the same stream of depth��rst sorted
answers regardless whether one computes the answers in the stream model� or
one computes the answers by the forest model and then applies dfs to this
forest� Also� one gets the same matrix of breadth��rst sorted answers� either by
computing queries directly in the matrix model or by applying bfs� to the forest
resulting from the most general model� Categorically speaking� we show that
there exist morphisms between the three monads� and that they are exactly the
functions dfs and bfs� �

The polymorphic function dfs is a morphism between the Forest� and Stream�

extended monads if it maps the predicates trueF and falseF to their counterparts
in the stream model and if it preserves the behaviour of the map functions
of the two monads and of the operators � and k� In other words� dfs is a

��

Forest� �� Stream� morphism if it satis�es�

dfs � trueF � trueS � ����

dfs � falseF � falseS � ����

dfs � fmap f � map f � dfs � ����

dfs � �p �F q� � �dfs � p� �S �dfs � q�� ����

dfs � �p kF q� � �dfs � p� kS �dfs � q�� ����

The equations ���� and ���� follow directly from the de�nitions of dfs and
the predicates true and false � Equation ���� can be proved by simultaneous
induction for dfs and dfs� � similarly to the proof of ����� To prove ����� we
need a following lemma�

dfs � fgraft � concat � �dfs�dfs�� ����

Here dfs � dfs denotes a categorical construction called the horizontal composi�
tion of dfs with itself� it is expressed as either�

dfs � dfs � dfs � fmap dfs � ����

dfs � dfs � map dfs � dfs � ����

These equations express the fact that it does not matter whether one �rst does
depth��rst search on the sub�forests or the main forest� The proof of ���� is
done by simultaneous induction on dfs and dfs� � similarly to the proof of �����

The proof of ���� is then�

dfs � �p �F q�

� dfs � fgraft � fmap q � p by ����

� concat �map dfs � dfs � fmap q � p by �������

� concat �map dfs �map q � dfs � p by ����

� concat �map �dfs � q� � dfs � p by ���

� �dfs � p� �S �dfs � q� by ���

The proof of ���� is a simple consequence of the distributivity of concat and
map through ���

Similarly� to prove that also bfs� is a monad morphism� we need to show that
trueF and falseF are correctly mapped by bfs� and that�

mmap f � bfs� � bfs� � fmap f � ����

bfs� � �p �F q� � �bfs� � p� �M �bfs� � q�� ����

bfs� � �p kF q� � �bfs� � p� kM �bfs� � q�� ����

The proofs of ���� and ���� go by structural induction on forests� The proof of
���� requires the following two lemmas which also can be proved by structural

��

induction on forests�

bfs� � fgraft � shu�e � �bfs��bfs� �� ����

bfs� � bfs� � bfs� � fmap bfs� � mmap bfs� � bfs� � ����

and we get�

bfs� � �p �F q�

� bfs� � fgraft � fmap q � p by ����

� shu�e �mmap bfs� � bfs� � fmap q � p by �������

� shu�e �mmap bfs� �mmap q � bfs� � p by ����

� shu�e �mmap �bfs� � q� � bfs� � p by ����

� �bfs� � p� �M �bfs� � q� by ����

Further work on this topic is to show that the monad Forest� is an initial object

in the �category of monads that describe logic programming�� This captures the
fact that the dfs and bfs� arrows in the diagram below are unique� Another in�
teresting monad for further algebraic survey of logic programming is the monad
where the answers are returned as sets�

Forest monad

dfs�� � � � �
� � � �

� � � �
�

� � � �
� � � �

� � � �
�

bfs� ����
����

����
���

����
����

����
�

Stream monad

� ����
����

����
���

����
����

����
� Matrix monad

��� � � � �
� � � �

� � � �
�

� � � �
� � � �

� � � �
�

Set monad

The de�nitions of the operators in the set monad would necessarily have to
be less operational then in the other three monads� it would be an algebraic
formulation of the least Herbrand models semantics of logic programs� The
existence of morphisms between the set monad and the stream and matrix
monads would show that the set of answers in both stream and matrix monads
is the same� i�e� it would serve as a formal proof that our implementation is
correct not only with regards to the operational semantics� but also to the formal
declarative semantics of logic programs� These morphisms would correspond to
a forgetful functor� i�e� one that �forgets� the information about the ordering
and the multiplicity of answers�

	 Conclusion and Related Work

Declarative programming� with its mathematical underpinning� was aimed to
simplify mathematical reasoning about programs� Both logic and functional
programming paradigms facilitate writing of mathematically clear programs and

��

both paradigms admit variation in execution strategy �lazy or eager� breadth�
�rst or depth��rst�� So far� only functional programming has allowed easy rea�
soning about the equality of the clear program with the corresponding e�cient
program� The proofs take advantage of a suite of algebraic laws for equational
inductive reasoning about functions over lists� We propose a corresponding
algebraic approach to reasoning about logic programs�

Such algebraic laws can be exploited at all stages of program development� They
have had a signi�cant in
uence on the development of the functional programs
so far� designers use them to device correct algorithms� programmers use them
to make e�cient programs� and language implementors use them to build a
language that is suited for optimisation by both programmers and compilers�

Our idea to use algebraic laws to describe and calculate logic programs is moti�
vated by several sources� ��� uses an algebraic approach to functional program�
ming both to derive individual programs and to study programming principles
�such as algorithm design� in general� while ��� uses algebraic description to
classify and study the di	erent programming paradigms� This paper is an at�
tempt to carry these ideas over to logic programming� emphasising the similarity
between its declarative and procedural readings�

Here we have concentrated on the study of the scheduling strategies� but the
algebraic approach has many other interesting applications� One interesting
topic is a semantical study of functional�logic programming� with more execution
details than the least complete Herbrand model in ���� We hope that this work
can stimulate other applications of algebraic reasoning to logic programs�

References

��� R� Bird and O� de Moor� Algebra of Programming� Prentice Hall� �����

��� R� Bird and P� Wadler� Introduction to Functional Programming� Prentice
Hall� �����

��� M� Hamana� Semantics for Interactive Higher�order Functional�logic Pro�

gramming� PhD thesis� University of Tsukuba� �����

��� C�A�R� Hoare and H� Jifeng� Unifying Theories of Programming� Prentice
Hall� �����

��� J�M� Spivey and S� Seres� Embedding Prolog in Haskell� To appear in �����
http� www�comlab�ox�ac�uk oucl users silvija�seres Papers ehp�ps�gz�

��� P� Wadler� The essence of functional programming� In ���th Annual Sym�

posium on Principles of Programming Languages� January �����

��� P� Wadler� Monads for functional programming� In Advanced Functional

Programming� volume ��� of LNCS� Springer Verlag� �����

��

