Higher-order transformation of logic programs

Silvija Seres and Mike Spivey

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.
{Silvija.Seres, Mike.Spivey}@comlab.ox.ac.uk
http://www.comlab.ox.ac.uk/oucl/work/silvija.seres

Abstract. It has earlier been assumed that a compositional approach to al-
gorithm design and program transformation is somehow unique to functional
programming. Elegant theoretical results codify the basic laws of algorithmics
within the functional paradigm and with this paper we hope to demonstrate
that some of the same techniques and results are applicable to logic program-
ming as well.

1 The problem

The Prolog predicates revl and rev2 are both true exactly if one argument list is the
reverse of the other.

revl ([1,])- rev2(A, B) : — revapp(4,[], B).
revl ([X|A], C) : — revapp([|, B, B).
revl (A, B), append (B, [X], C). revapp([X|A], B, C) : —

revapp(A, [X|B], C).

These two predicates are equal according to their declarative interpretation, but
they have a very different computational behaviour: the time complexity for rev! is
quadratic while for rev2 it is linear. The aim of this paper is to present a general
technique for developing the efficient predicate from the clear but inefficient one, in
this and similar examples.

Arguably the most general transformational technique in logic programming is
the “rules and strategies” approach [7]. In this technique the rules perform opera-
tions such as an unfolding or folding of clause definitions, introduction of new clause
definitions, deletion of irrelevant, failing or subsumed clauses, and certain rearrange-
ments of goals or clauses. Subject to certain conditions, these rules can be proved
correct relative to the most common declarative semantics of logic programs. The ap-
plication of the transformation rules is guided by meta-rules called strategies, which
prescribe suitable sequences of basic rule applications. The main strategies involve

* Extended Abstracts of LOPSTR. 2000, Tenth Int’l Workshop on Logic-based Program
Synthesis and Transformation, 24-28 July 2000, London, UK. Technical Report Series,
Department of Computer Science, University of Manchester, ISSN 1361-6161. Report
number UMCS-00-6-1. http://www.cs.man.ac.uk/cstechrep/titles00.html

tupling of goals that visit the same data structure in a similar way, generalisation
of goals in a clause in order to fold them with some other clause, elimination of
unnecessary variables, and fusion of predicates defined by two independent recursive
predicates into a single predicate. These strategies are used as the building blocks of
more complex transformation techniques, and for limited classes of predicates these
complex strategies have been well understood and classified and can be seen as the
backbone of a compositional method for transforming logic programs.

Our transformational example can indeed be solved by the rules and strategies
approach, together with mathematical induction, needed to prove the associativity
of append on which the transformation depends. The basic strategies involved are
tupling and generalisation, and the derivation is simple and semantically correct rel-
ative to the least Herbrand model of the two programs. However, there are a few
methodological problems in this approach: first, the declarative semantics does not
quite capture the behaviour of logic programs when they are evaluated under the
standard depth-first search strategy, and we have no clear measure of the reduction
of the computation complexity. Second, the application of induction requires a sep-
arate form of reasoning. But maybe most importantly, if we did not know of this
particular combination of strategies, there would be no systematic methodological
approach to guide us in the derivation. As far as we know, there are no general
results regarding what complex strategies can be applied for families of transforma-
tionaly similar predicates. Below we outline a generalised approach to logic program
transformations, and argue that such an approach should be based on higher-order
predicates and their properties.

2 The proposed solution

The problem described above has been recently explored and explained for functional
programs in [2]. These results build on the ample heritage of program transforma-
tion in the functional programming community and are based on laws of algebra and
category theory. According to this algebra of functional programming, the program
transformation in the example above can be seen as an instance of a more general
transformational strategy, valid for an entire family of programs based on functions
foldl and foldr and parametric in the data structure. Algebraic laws regarding such
higher-order functions prove to be highly versatile for functional program transfor-
mations.

With this paper we begin an investigation of how these results can be translated to
logic programs, and present two examples where this technique has been successfully
applied to derive efficient implementations of logic programs from their specifications.

We base our transformation methods on a translation of logic programs into lazy
functional programs in Haskell that we have described elsewhere [11]. This embed-
ding and a set of algebraic laws valid for the basic combinators of the embedding are
sketched in section 3. There are two main advantages in using this functional embed-
ding for logic program transformations. The first one is that it allows us to reason
about logic programs in a simple calculational style, using rewriting and the algebraic
laws of combinators. The second, and the more interesting reason, is that the em-

bedding has the advantage that many higher-order predicates are easily expressible
as functions, since Haskell functions can accept our predicates as arguments. We can
implement the generalised “prepackaged recursion operators” foldl, foldr, map etc. as
functions from predicates to predicates, and thereby get the opportunity to use their
algebraic properties for program transformation. This approach avoids the problems
related to higher-order unification, while it gives us the power of generic program-
ming and provides the appropriate language and level of abstraction to reason about
logic program transformation. Even though each derivation can be performed in a
first-order setting, the general strategies guiding the program transformations depend
essentially on the higher-order functions. We argue that, as in functional program-
ming, also in logic programming it is the properties of the generic recursion operators
that yield the generic transformation strategies.

In sections 4 and 5 we show two examples where the laws are used in logic program
transformation, and in the final section we discuss related work and suggest directions
for future research.

3 The embedding

Using a translation technique related to Clark’s completion [4], any logic program
can be translated to a set of functions in a lazy functional language in such a way
that the declarative semantics of the logic program is preserved. In [11] we describe
an implementation of such a embedding where a logic program is translated to a lazy
functional program using a simple combinator library with only four combinators
=, 3, & and ||; these combinators perform respectively unification, introduction of
local variables, conjunction of literals in a clause body, and disjunction of clauses.
The combinators are implemented in such a way that they exactly mimic the SLD-
resolution process.

With a some minimal syntactic differences, the embedded predicates have es-
sentially the same shape as the original ones. For example, the standard predicate
append is implemented in a logic program as:

append([], X5, XS).

append([X| XS], YS,[X|ZS]) : — append(XS, YS, ZS).
The patterns and repeated variables from the head of each clause can be replaced
by explicit equations written at the start of the body. Then each head contains only
a list of distinct variables, and renaming can ensure that these lists of variables are
same. We translate such a logic predicate to a Haskell function by joining the clause
bodies with the || operation and the literals in a clause with the & operation, by

existentially quantifying any variables that appear in the body but not in the head
of a clause, and by using = to compute unification:

append(p, q,r) =
(p=nil&qg=r)
|| (3z,zs,2s = p = cons(z,xs) & r = cons(x, zs) &

append(xs, q, 28)).

The evaluation of this Haskell function mimics the computation of a corresponding
goal in a logic program by SLD-resolution. The function append takes as input a
tuple of terms and a substitution (representing the state of knowledge about the
values of variables at the time the predicate is invoked), and produces a collection
of substitutions, each corresponding to a solution of the predicate that is consistent
with the input substitution. The collection of substitutions that is returned by append
may be a lazy stream to model the depth-first execution model of Prolog, or it may
be a search tree in a more general execution model. Other models of search may also
be incorporated: for example, there is an implementation of a breadth-first traversal
of the SLD-tree that uses lazy streams of finite lists of answers.

The embedded predicate append behaves like a relation, i.e., one can compute the
answers to goals append([1],y,[1, 2]) or append(z,y,[1,2]).

The implementation of each of the four combinators of the embedding is strikingly
simple, and can be given a clear categorical description which yields nice computa-
tional rules: it can be easily proved that (irrespectively of the search model) the
operators and the primitive predicates true and false enjoy some of the standard
laws of predicate calculus, e.g. & is associative and has true as its left and right unit
and false as its left zero, || is associative and has false as its left and right unit and &
distributes through || from the right. Other properties that are satisfied by the con-
nectives of propositional logic are not shared by our operators, because the answers
are produced in a definite order and with definite multiplicity. These laws are, of
course, valid in the declarative reading of logic programs. Since procedural equality
is too strict when reasoning about predicates with different complexity behaviour,
we will permit in our transformational proofs also the use of the laws that are only
valid in the declarative semantics.

These algebraic laws can be used to prove the equivalence of two logic programs
with equivalent declarative reading. The basic idea is to embed both programs in
this functional setting, and then use the laws to show that the two functions satisfy
the same recursive equation. Further, a result exists that guarantees that all guarded
recursive predicate definitions have a unique solution. The proof for the uniqueness
of fixpoints is based on metric spaces and a certain contraction property of guarded
predicates. We present this result elsewhere [10].

4 Example 1: reverse

The standard definition of the naive reverse predicate has quadratic time complexity:

revl (11,12) =
(i = nil & 12 = nl)
|| (3z,zs,ys — 11 = cons(z,zs) & revl (zs, ys) &
append(ys, cons(z, nil), 12)).

A better definition of reverse uses accumulators and runs in linear time:

rev2(l1,12) = revapp (11, nil,12)
revapp(l1, ace,12) =
(11 =nil & 12 = acc)
| 3z, zs — 11 = cons(z, zs) & revapp(zs, cons(z, acc), 12)).

We can prove these two definitions equivalent by using the previously mentioned
algebraic laws together with structural induction. This approach is similar to the
rules and strategies approach for logic program transformation. However, there is
a shorter and more elegant way of proving these predicates equal, by resorting to
program derivation techniques based on higher-order fold predicates and their prop-
erties. Such fold operators have proved to be fundamental in functional programming,
partly because they provide for a disciplined use of recursion, namely a recursive de-
composition that follows the structure of the data type. They also satisfy a set of
laws that are crucial in the functional program transformation proofs, and we will
rely on one of those laws in our derivation. The outline of the proof is:

revl (zs, ys)

= foldRList (snoc, nil) (zs, ys) by defn. of foldRList and snoc
= foldLList (flipapp, nil) (zs,ys) by duality law (1), see below
= revapp(zs, nil, ys) by defn. of foldLList
= rev2(xs, ys) by defn. of rev2

and we justify each of the steps below.

The definitions of some families of higher-order predicates, for example the map
and fold predicates over lists or other data structures, can be made without any
extensions to the implementation of our embedding. They can be implemented us-
ing Haskell’s higher-order functions on predicates, so we do not need to resort to
the higher-order unification machinery of, say, A-Prolog. For example, the predicate
foldRList, which holds iff the predicate p applied right-associatively to all the ele-
ments of the list [yields the term res, could be defined as:

foldRList (p,e) (I,res) =
(I = nil & e = res)
|| (3z,zs,r — 1 = cons(z,xs) &
foldRList (p,e) (xs,r) & p(z,r,res))

where (p,e) are the higher-order parameters to the function foldRList and (I,res)
are the arguments to the resulting predicate. The predicate p corresponds to a bi-
nary function to be applied to the consecutive list elements, and e denotes the initial
element used to start p “rolling”. For example, the function foldRList (add,0) ap-
plied to ([2,7, 8], res) produces the predicate ry = 0& add(8,71,72) & add(7,r4,r3) &
add(2,r3,res); when invoked with the appropriate input substitution (say the empty

one), this predicate has the effect that res unifies with the term denoting the numeral
17.
In the first step of the proof, we use the following predicate snoc:

snoc (z,l,res) = append(l, cons(z, nil), res)

By unfolding foldRList (snoc,nil) (zs,ys) in the second line in the proof and
using the standard algebraic laws, we arrive to the same guarded recursive definition
as for revl. By the uniqueness of the fixpoints we then conclude the equality of the
two predicates involved in the initial step of the proof.

The next step in the proof involves a transition from foldRList to another higher-
order predicate, foldLList. This left-associating fold over lists could be defined as:

foldLList (p,e) (I,res) =
(I = nil & e = res)
|| (3z,zs,r — 1 = cons(z,xs) &
ple,x,r) & foldLList (p,r) (xs,res))

Roughly, the function call foldLList (add,0) ([2,7,8],res) would return the pred-
icate add(0,2,r,) & add(ry,7,r2) & add(r2,8,r3) & rs = res.
The second step in the main proof is an instance of the so-called duality law:

foldRList (f,e) (I,res) = foldLList (g,e) (I, res) (1)

where f is replaced by snoc, g by flipapp, and e by nil. The law above holds if
f, g and e satisfy the following requirements: f and g must associate with each
other, and f(z,e,res) must equal g(e,z,res) for all x and res. The predicates f
and g associate with each other iff the predicates 3t — (f(z, t,res) & g(y, z,t)) and
It — (g(t, z,res) & f(z,y,t)) are equal. In functional notation this corresponds to
flz,9(y,2)) = g(f(z,y),z). We can prove (1) in a simple rewriting proof, using the
definitions of foldRList and foldLList and the assumptions about f, g and e.

Returning to our example, we need to check that the duality law really is appli-
cable, so we now prove that the predicates snoc and flipapp and term nil satisfy the
requirements for f, g and e. If flipapp is defined as:

flipapp (1, z, res) = append(cons(z, nil), 1, res)

then we unfold the definition of both functions, and use the associativity of append
in step marked with (*), to get:

(3t — (snoc(z, t, res) & flipapp(y, z,t)))

= (3t — (append(t, cons(z,nil), res) & append(cons(z,nil), y, t)))

= (3t — (append(cons(z,nil), t, res) & append(y, cons(z, nil), t))) (*)
= (3t — (flipapp(t, z, res) & snoc(z,y,t)))

and similarly for snoc(z, nil, res) and flipapp(nil, z, res). The associativity of append
used in (*) can be shown by induction on the list argument res.

For the penultimate step in the proof, we first prove that revapp(l, ace, res) equals
foldLList (flipapp, acc) (I, res). We can prove this by a simple induction proof, in
which we do induction on the argument [to show that the two predicates rewrite to
the same guarded recursive definition, and then by referring to the fixpoint theorem
once again to conclude that they are equal. Then, instantiating the arbitrary term
acc in foldLList to the term nil, we get exactly the foldLList (flipapp, nil) (zs,ys)
from the third line of the proof, so we can rewrite this to a call to revapp(xs, nil, ys)
in the fourth line. The final step follows directly from the definition of rev2.

The accumulation program transformation used in this example is closely related
to the continuation passing programming style. It is argued informally in [12] that
accumulators are often just a data structure representing a continuation function,
while [3] gives a survey of many ways of representing accumulators and presents
continuations as one of them. From a purely algebraic view, both techniques exploit
the associativity property and an existence of a neutral element of some monoid.
The reverse logic predicate can easily be expressed in terms of continuations in our
embedding; we can implement the continuations as A-abstractions over predicates:

rev3(11,12) = reve (A\x.z =12) (11,12)
reve (f) (11,12) =
(11 = nil & f(nil))
|| (3z,2zs — 11 = cons(z, zs)
reve (Ay.(Ar — append(y, cons(z, nil), r) & f(r))) (ws,12))

This definition of rev? can also be proved equal to rev2 by techniques similar to
those used in functional programming as described in [12].

5 Example 2: sort

The following example is inspired by [2]. We start with the standard implementation
of the naiveSort predicate that uses the ’generate-and-test’ method to sort a list:

naweSort(11,12) = perm(11,12) & isSorted(12)

isSorted(l) =

(I = nil)

3z — 1 = cons(x,nil))

(Fz,y,12 — 1 = cons(x, cons(y,12)) & le(z, y) &
isSorted(cons(y,12)))

where perm has the standard definition, using the auxiliary predicate delete. We now
wish to show that naiveSort is equivalent to its more efficient variant iSort, which
performs insertion sort. Given a predicate insert(z, zs,12) which is true if the sorted
list 12 is the result of inserting the element x in the appropriate position in the sorted

list zs, the usual implementation of the iSort predicate is:
iSort(11,12) =
(I = nil & 12 = nil)
|| (3z,ys — 11 = cons(z,ys) &
iSort(ys, zs) & insert(x, zs,12))

The outline of this derivation is similar to the previous example, except that the
essential step this time uses the fusion law for fold instead of the duality law:

naiveSort(11,12)

= isSorted(12) & perm(l1,12) by defn. of naiveSort
= isSorted(12) & foldRList (add,nil) (11,12) by defn. of foldRList
= foldRList (insert, nil) (11,12) by fusion (2), see below
= iSort(l1,12). by defn. of iSort

Here add is defined as the converse of delete. The most interesting step in the deriva-
tion involves the fusion law for foldR List. Assume that the predicates f, g and h, and
term e, are such that f(e) holds and that f(res)&g(x,y, res) equals h(z,y,res)& f(y)
for all terms x, y and res (in functional notation, f(g y) = h « (f y)). Then, the
fusion law states that:

f(res) & foldRList (g, e) (I, res) = foldRList (h,e) (I, res) (2)

This law can be proved by induction. If we now insert our predicate isSorted for f,
add for g, insert for h, and nil for e, the third step in the main proof is a direct
application of this law. It can be easily shown that the chosen predicates satisfy the
conditions for f, g, h and e.

Following a similar approach, we can also derive the equivalence of the naive
sort and, for example, quickSort or selectionSort. Both of these derivations rely on
the fusion law, but they are algebraically slightly more advanced than the above
derivation of iSort because they also involve properties of unfold predicates. The
derivation of quickSort uses fold and unfold predicates on trees. The reason for this
is that even though quickSort is usually represented as a flat recursive predicate, it
has a compositional form which is basically a sort on trees where the intermediate
tree data type has been eliminated.

6 Related and further work

An embedding of logic programs to a functional setting has been explored by Wand
[13], Baudinet [1], Ross [9] and Hinze [6], but with different motives. They all pursue
an algebraic semantics for logic programming, but they do not attempt to gener-
alise their techniques to transformational strategies. The examples presented here
are mostly inspired by Bird and de Moor’s work [2] on similar program synthesis
and transformation techniques for functional programming. The contribution of this

paper is in a translation of these techniques to logic programming. Related work in
functional setting includes, among others, Wand’s work [12] on continuation based
program transformation techniques. In a logic programming setting, Pettorossi and
Proietti present in [8] a particular transformation strategy based on an of introduc-
tion of lists and higher-order predicates on lists.

This approach to logic program transformation opens several areas for further
research. One is to apply these transformational techniques to constraint program-
ming, which can also be translated to a functional setting by means of our embedding.
Another direction is to examine what other results from [2] we can transfer to logic
programming. Yet another direction is to build automatic tools for logic program
transformation based on the algebraic approach described here; this has been suc-
cessfully done for functional programs in [5]. All of these direction motivate a further
cross-fertilisation of methods for program transformation between the two declarative
paradigms.

References

1. M. Baudinet. Logic Programming Semantics Techniques and Applications. PhD thesis,
Stanford Univeristy, 1989.

2. R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.

3. E. Boiten. The many disguises of accumulation. Technical Report 91-26, University of
Nijmegen, 1991.

4. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data
Bases, pages 293—-322. Plenum Press, 1978.

5. O. de Moor and G. Sittampalam. Generic program transformation. In Procs. 8rd
International Summer School on Advanced Functional Programming, 1998.

6. R. Hinze. Prological features in a functional setting - axioms and implementations. In
Proc. of FLOPS’98, Fuji, 1998.

7. A. Pettorossi and M. Proietti. Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 5, chapter Transformation of Logic Programs, pages 697-787.
Oxford University Press, 1998.

8. M. Proietti and A. Pettorossi. Program derivation via list introduction. In Proceedings of
IFIP TC2 Working Conference on Algorithmic Languages and Calculi, Le bischenberg,
France, 1997.

9. B.J. Ross. Using algebraic semantics for proving Prolog termination and transformation.
Proceedings of the UKALP 1991, 1991.

10. S. Seres. Algebraic Techniques for Logic Programming. PhD thesis, University of Oxford,
2000.

11. J.M. Spivey and S. Seres. Embedding Prolog in Haskell. In Proceedings of Haskell’99,
Paris, France, 1999.

12. M. Wand. Continuation-based program transformation strategies. Journal of the ACM,
27(1), 1980.

13. M. Wand. A semantic algebra for logic programming. Technical Report 148, Indiana
University, 1983.

