Optimisation problems in logic programming:
an algebraic approach

Silvija Seres and Shin-Cheng Mu

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.

{ss,scm}@comlab.ox.ac.uk

Abstract. Declarative programming, with its mathematical underpin-
ning, was aimed to simplify rigorous reasoning about programs. For func-
tional programs, an algebraic calculus of relations has previously been
applied to optimisation problems to derive efficient greedy or dynamic
programs from the corresponding inefficient but obviously correct spec-
ifications. Here we argue that this approach is natural also in the logic
programming setting.

1 Introduction

Dynamic programming' is the name for a general strategy used in algorithms
that organises the computation so that subproblems are evaluated once instead
of many times; traditionally this is done by combining a recurrence equation
with tabling or memoing. As applied to combinatorial optimisation problems,
dynamic programming was first popularised by Bellman in [9], where he intro-
duced the Principle of Optimality which states that an optimal solution is com-
posed of optimal solutions to subproblems. This is the essential (though only
sufficient and not necessary) condition for the dynamic programming technique
to be applicable. Greedy algorithms also suppose that the principle of optimality
holds, but in addition they exploit a greedy condition which guarantees that on
basis of some local information only the best subproblem needs to be computed.
Some problems fall in between these two extremes of pursuing all or only one of
the recursive decompositions. For these, the principle of optimality is strength-
ened with an additional condition which is used to narrow down the choice to a
subset of decompositions which might eventually lead to an optimal solution.
The problems which satisfy the principle of optimality can be divided into
two categories. Some are naturally solved in a top-down way, through a decom-
position of a recursive data-type and a consequent combination of the partial
answers. Others are better solved in a bottom-up way, where a recursive data-
type which contains the answers is being composed from some seed. Provided
that the conditions mentioned above hold, greedy algorithms can be derived for
both of these classes of problems, but dynamic programming, as treated here,

! The nomenclature in the dynamic programming literature is somewhat inconsistent,
so in what follows we have chosen to follow a neutral source [4].
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only applies to problems with bottom-up, compositional specifications. For the
problems which do not satisfy the greedy condition yet require a decompositional
solution, we derive a third alternative: thinning algorithms.

From a programmers point of view, two main questions arise from this de-
scription of algorithms for optimisation problems. One is how to formalise the
aforementioned conditions for each of the three strategies, in such a way that pro-
grammers can easily analyse the problem and identify the appropriate algorithm
design strategy. The second is how can the programmers use this information
to derive the correct and efficient algorithm within the given strategy. In the
traditional, tabulating, approach to dynamic programming, there is no general
answer to these two questions.

These two questions have recently been addressed by the relational algebraic
approach to optimisation problems, and applied in the framework of functional
programming. Helman [8] was the first to separate the ideas of problem structure
and computation, and his ideas have been generalised by de Moor and Bird [6,
1] and later by Curtis [5].

Here, we apply these results to the setting of logic programs by showing
how this approach can be used to answer these questions for three standard
examples in dynamic programming: the string-edit, the minimum lateness and
the 1/0 knapsack problem. In section 2 we present the general framework, and in
section 3 we formulate in terms of higher-order logic programs the three central
theorems for the classification of optimisation problems and for the derivation
of the respective algorithms. In sections 4, 5 and 6 we show how the theorems
can be applied to the problems mentioned above, and in section 7 we conclude.
The full code for the three examples can be found in the appendices.

2 Algebraic approach to dynamic programming

The goal behind the algebraic approach to optimisation problems is to provide a
general tool for both the analysis and the derivation of the appropriate efficient
algorithm. The starting point for both these tasks is a uniform specification of
optimisation problems. In this section, we first present this specification, and
then we prepare the ground for the analysis and the derivation that will be
presented in the following section. In order to make the theorems as general
as possible, we use higher-order predicates, defined in terms of call/n, which
applies a given predicate to the rest of the argument list. Also, for the sake of
simplicity, when we need to return a collection of answers to a given predicate
rather than the individual answers, we use the standard predicate bagof/3.
Optimisation problems ask for the best solution among all the solutions to a
particular problem. This specification is most naturally formulated as a composi-
tion of two relations: first generate all the possible solutions to the problem, and
then test this collection of answers to find the best answers among them. Which
answers are “best” depends on the particular ordering of solutions which will
inevitably vary from problem to problem, such as maximising the value, min-
imising the delay, etc. To abstract from such particulars, we write r to denote
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the ordering of the solutions, and use a higher-order predicate best (r,Bag,0ut)
that is true if Out contains the r-optimal solutions in a collection Bag. Given
a predicate bagof (X,p(X) ,Bag) that collects in Bag all the X’s satisfying p(X),
the specification can be implemented as:

optimal(In,Out) :- bagof (X,solution(In,X),Bag),
best (r,Bag,0ut) .

The relation r must be a preorder, i.e. a reflexive and transitive relation. How-
ever, some elements of Bag may not be related by it, so it need not be a connected
preorder. We say that a solution A is better then B with respect to r if and only
if the predicate r (A,B) holds, and the predicate best (r,X,C) holds when r hap-
pens to be connected and C matches all the optimal elements in X with respect
to r:

best(r, [A],A).
best(r,[A,B|X],C) :- call(r,A,B), best(r,[AlX],C).
best(r,[A,B|X],C) :- call(r,B,A), best(r,[BIX],C).

Further, we observe that most of the common optimisation problems can be
formulated in terms of some initial data-types, such as lists or trees, and that
the computation of individual solutions performed by solution(In,X) can be
expressed in terms of higher-order relations over these initial data-types, such
as fold or unfold. We simplify the presentation by expressing all the results in
terms of lists, which suffices for the purposes of our three examples, although
the more general setting of [1] includes any initial data-types.

The fold relation for lists collapses an input list to a value according to a
given relation p, while unfold constructs from an input value a list according
to the relation p. They are converses of each other; declaratively, we do not
need two separate definitions as we do in functional programming languages, as
we could simply reverse the roles of two arguments in to produce a list rather
than consume a list. Operationally, however, we need to reverse the order of the
two premises so that Prolog and other systems with an unfair selection rule can
solve the subgoals in the correct order. Still, in the relational setting of logic
programming their definitions are almost identical, the only difference being
ordering of the two literals in the second clause:

fold(_,E,[1,E).
fold(p,E,[A1[X],A) :- fold(p,E,X,A2), call(p,(A1,A2),A).

unfold(_,E, [],E).
unfold(p,E, [A1|X],A) :- call(p,(A,A2),A), unfold(p,E,X,A2).

In case of fold it is expected that the input parameter will be the third and
the output will be the fourth argument, while for unfold their positions will
be swapped. For example, fold(add,0,[2,7,8],X) will be true for X = 17, while
unfold(add,0,Y,17) will return Y = [2,7, 8] as one of its many answers, for an
appropriate definition of the predicate add.
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As for an application of fold in a computation of a particular solution in
bagof, it is the natural predicate to use whenever we are given a list and need
to decompose it, say, in order to find an optimal way to select some elements
from it. For example, in the knapsack problem, if In is a list of items and the
task is to select most valuable sublist of it within a given knapsack capacity, a
solution Out can be computed by a fold which uses the term emptysack as the
initial input to the computation and the relation consumeone to consume the
consequent elements of the In list:

solution(In,Out) :- fold(consumeone,emptysack,In,Qut).

Alternatively, whenever we need to compose the solutions from some seeds, as for
example in the string edit problem where we are looking at sequences of editing
operations between two strings, we will use unfold to implement the predicate
solution. The solutions can be computed by an unfold which uses the term
emptyedit as the initial edit empty sequence and the relation addone to produce
the consequent edit instructions in the list Out. Predicate addone builds the list
Out from its previous result and the seed In, which simply contains the two
strings to be edited:

solution(In,Out) :- unfold(addone,emptyedit,Out,In).

Finally, the notion of refinement in the next section is as follows: the derived
predicate fast refines the specification spec if for all inputs In, we have:

fast(In,Out) = spec(In,Out)

With these preliminaries out of the way, we are now ready to express the three
central optimisational theorems regarding the applicability and the derivation
of dynamic, greedy and thinning algorithms. The proofs of these theorems are
omitted in this paper for lack of space, but can be found in a more general form in
[1]. These proofs are based on equational reasoning about the algebraic properties
of the relations involved, which is why we refer to this as an “algebraic” approach.
In this style of program calculation, theorems about higher-order functions like
fold play a central role, with the fusion theorem for fold being probably the
single most important theorem of the calculus and the pivotal point of algebraic
program transformation.

3 The three theorems

Before we start introducing the main theorems of this paper, we need to in-
troduce the notion of monotonicity of predicates. The predicate p((A,X), NewX)
constructs a solution NewX by incrementing the partial solution X by A. We say
that p is monotonic, or order preserving, on a preorder r if, for any arguments
X; and Xj, if X; is better than X; with respect to r, no matter how p extends the
inferior solution to some NewX;, we can always find at least one way to extend
by p the superior solution so that the resulting NewX; is better than NewX;. If
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this is the case, we know that it is safe to throw the inferior solutions away and
only extend the best ones. Formally:

r(Xs, X3) A p((4,X;), NewX;) =
INewX;. p((4,X;), NewX;) A r(NewX;, NewX;). (1)

The predicate p can be non-deterministic. When p happens to be deterministic,
in particular, when it is the list constructor cons defined by cons((A,X), [A|X]),
the condition (1) simplifies to:

r(Xs,X;) = r([AXa], [A[X;]). (2)

The Dynamic Theorem is applicable to problems in which it is natural for
the partial results to be computed by an unfold, i.e. by constructing candidate
answers from a seed. The theorem also guides the first part of the derivation of
the dynamic program, but the programmer is still left to his own ingenuity to
derive the appropriate tabling scheme. Given that (2) holds, the specification:

d(In,0ut) :- bagof(X,unfold(step,base,X,In),Bag),
best (r,Bag,0ut).

can be refined to:

d(base, []1).

d(In,Out) :- bagof((A,X),step((A,X),In),Bag),
consmap (d,Bag,Bagl),
best(r,Bagl,Out).

consmap (P, [1,[1).
consmap (P, [(A,X) |Y], [[A|INewX] |NewY]) :- call(P,X,NewX),
consmap (P,Y,NewY).

The derived program is better since it filters the input through best at each level
of recursion, rather than maintain all the unprofitable solutions and choosing the
optimal ones at the very end, as the specification does. The second program for
d describes a recursive scheme in which first step((A,X),In) is applied to In
in all possible ways. These results (A1,X1),...(An, Xn) are collected by bagof in
the bag Bag. Then the recursive calls to d are applied by consmap to each of the
new seeds Xi,...X,. These calls to d generate the lists NewXy, ...NewX,, which
are consequently “consed” with Ay, ...A,, resulting in the list Bagl of solution
lists.

As mentioned earlier, the monotonic condition (2) is actually the Principle
of Optimality stated formally for lists. Here is the reason why it is needed in this
derivation. Each seed X; may generate many alternatives for NewX;, and all of
these will be contained in Bagl. However, since each of these NewX; is consed with
the same A;, according to (2), the best X;’s will always lead to the best solutions.
That is why we only need to consider the result of best for each decomposition
of subproblems.
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If the set of decompositions associated with each subproblem is overlapping, a
naive evaluation of the derived program will involve much repeating work. How-
ever, several declarative languages provide a built-in tabulation facility where
the solutions to subproblems can be implicitly recorded and retrieved for subse-
quent use, and with such evaluation the derived program would have polynomial
rather than exponential time complexity. Notice that such implicit tabulation
would not reduce the time complexity of the specification in the same way; this
is because the specification produces a bag with all the solutions and if there are
exponentially many of them, the best predicate must take exponential time.

Similarly, the Greedy Theorem is used to check whether one can solve an
optimisational problem by a greedy algorithm, and for the positive instances to
derive this algorithm from the specification. While the dynamic theorem allows
us to improve the efficiency of the specification by only considering the best
partial solutions for each decomposition, the greedy theorem goes much further:
the derived greedy program arrives to the optimal solution by only computing
the best partial solutions of one, best, decomposition at each recursion level.
Obviously, the conditions required by this theorem must be rather strong, since
we need an additional ordering which will provide us with a hint exactly which
decomposition to use, based on local information.

There are actually two greedy theorems, one for fold and one for unfold,
and here we choose to present only the one relevant for our examples, based
on unfold. If the monotonicity condition (2) is satisfied, and if we can find a
preorder q defined on pairs which represent problem decompositions, such that:

q((As, Ins), (A5, In;)) A unfold(step,base,Outj, In;) =
J Out;. unfold(step, base, Outs, In;) A r([A;|Out;], [A;|0ut;]) (3)

then the following program segment:

g(In,Out) :- bagof(X,unfold(step,base,X,In),Bag),
best (r,Bag,0ut) .

can be refined to:

g(base, []1).
g(In, [Al|NewX1]) :- bagof ((A,X),step((A,X),In),Bag),
best(q,Bag, (A1,X1)), g(X1,NewX1).

As in the dynamic theorem, the condition (2) enables us to consider only the best
partial solutions for each decomposition. Even better, only the best decomposi-
tion is needed, and the greedy condition (3) uses q to chose this decomposition,
say, (Ai,In;). In cases where the input is such that best matches more than
one element in Bag, we can refine this program further by replacing best with
a predicate onebest which is matched only once.

Note that q is an ordering on decompositions, while r is an ordering on re-
sults. If we have an ordering q such that for any pair of decompositions, say
(Ai,In;) and (Aj,Iny), if (A;, In;) is preferred to (Aj,In;) by q, that we know
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that for any possible outcome Out; of the inferior decomposition, we can find
at least one outcome Out; of the superior decomposition, such that the total
result [A;|Out;] will be better than [A;|Out;], according to the ordering r. This
is why, in the derived program, we can after each step safely chose the best de-
composition (A1,X1) according to q, and recursively apply g only to this optimal
decomposition without considering others.

We have previously mentioned that two distinct form of greedy theorem ex-
ists, one for problems defined in terms of fold and one for those defined in
terms of unfold. The dynamic theorem, however, only works for problems spec-
ified with unfold. Problems that satisfy the principle of optimality and require
a specification in terms of fold can be solved by the Thinning Theorem. This
theorem specifies a monotonicity condition that can be used to discard some of
the unprofitable decompositions in the derived program.

Assume that we have preorders r and q respectively on solutions and on prob-
lem decompositions, and predicates thin and pow, with the following specifica-
tions. The preorder q is a sub-relation of preorder r, meaning q(X,Y) = r(X,Y),
and it is not necessarily connected. The predicate step is monotonic (as in
(1)) on the converse of q, which we denote by q°. Furthermore, thin(r,XS,YS)
holds if YS is a subset of XS and VX € XS. Y € YS. r(Y,X), that is, for each so-
lution in XS there is a better solution in YS. Finally, pow(p, (A,XS),Y) holds if
X € XS. p((A,X),Y), that is, if p applied to some arbitrary element of X of XS
yields Y. Then the program:

t(In,Out) :- bagof(X,fold(step,base,In,X),Bag),
best (r,Bag,0ut).

can be refined to:

t(In,Out) :- fold(tstep, [base],In,Bag),
best (r,Bag,0ut) .

tstep((A,AS),YS) :- bagof (X,pow(step, (A,AS),X),XS),
thin(q,XS,YS).

The motivation here is that we promote bagof in fold, so that we can thin it at
each recursion stage. At each stage, we use a pow operator to apply step in all
possible ways to the bag of partial solutions, then collect the results. The role of
thin is to use the preorder q to shrink the size of the bag of solutions.

The specification of thin(q,X,Y) in effect means that if an element in X
is worse than some other element with respect to g, then by monotonicity we
need not keep it in Y. Obviously, this specification allows thin to return its
input unshrank, and in that case the derived program is as inefficient as the
specification. To gain from this refinement without relying on tabling, we need
to find a q that removes a considerable portion of the bag of the partial solutions.
On the other hand, if we manage to find a q so strong that it is a connected
preorder, we can simply keep the best partial solution at each stage, which would
correspond to a greedy algorithm.
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Finally, the premises for the three theorems are actually stronger than they
need to be, so both (2) and (3) can be additionally restricted. A weaker form of
(2) states that X; and X; are composed from the same seed In:

(3In.unfold(step, base,X;, In) A unfold(step, base,X;, In)) A r(Xi, X;)
= r([AlX], [AX;]) (4)

and, similarly, a weaker form of (3) requires that both (A;, In;) and (Aj, In;) are
decompositions of the same input In:

(3In.step((A;, In;), In) A step((4;, In;), In))
A q((As,In;), (Aj,In;)) Aunfold(step, base,Outj, In;) (5)
= J0ut;. unfold(step, base,Out;, In;) A r([A;|Out;], [A;|0ut;])

We will use these conditions in section 6.

Now we go on to apply these three theorems to three classic optimisation
problems: dynamic theorem to the string edit problem, thinning theorem to 1/0
knapsack problem, and greedy theorem to the minimal lateness problem.

4 Dynamic programming example: string edit

Given two strings x and y, the string edit problem asks for the minimal sequence
of editing operations required to transform z into y. The choice of the editing
operations varies in different formulations of this problem, and we choose the
simplest possible set: insert a character into z, delete a character from x and copy
a character in x, i.e. simply retain the character. These three operations contain
enough information to construct both strings from scratch, if one interprets copy
a as “append a to both strings”, insert a as “append a to the right string” and
delete a as “append a to the left string”.

We choose to represent the strings as lists of characters and the edit sequence
as a list containing pairs of (op, char), where op is one of ins, del or cpy. Each
operation costs one unit, so the optimal edit sequence is one with a minimal
length. Since there might be more than one such solution, we choose the first.

As discussed earlier, the string edit problem constructs the solutions, which
are lists of editing instructions, by means of an unfold from the seed (S1,S2)
containing the two input strings. The specification of the problem is thus:

edit((S1,S2),0ut) :- bagof (X,unfold(step, ([1,[]),X, (S1,52)),Bag),
best (1leq,Bag,0ut).

The predicate step applies and records one editing instruction to the pair of
input strings, and the predicate 11eq compares the lengths of two edit sequences:

step(((cpy,A), (X,Y)), (LAIX],[AIYD])).
step(((del,A),(X,[1)), (LAIXT,[D)).
step(((del,A),(X,[BIY])), ([AIX],[BIY])).
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step(((ins,B), ([1,Y)), (0, B1Y1).
step(((ins,B), ([A|X],Y)), ([AIX],[BIY])).

lleq(X,Y) :- length(X,M), length(Y,N), M =< N.

Obviously 1leq is monotonic on cons, since consing an element to two sequences
preserves the length comparison between them. So (2) holds and we can apply
the dynamic theorem. A direct application of the theorem results in the following
program:

edit2(([1,01),01).

edit2((S1,S2),0ut) :- bagof (X,step(X, (S1,52)),Bag),
consmap (edit2,Bag,Bagl),
best (1leq,Bagl,Out) .

Using XSB [10], or some other tabling Prolog system, edit2 can be automat-
ically tabled and the execution complexity becomes polynomial because there
are only m % n different subproblems, where m and n are the lengths of the two
sequences. The complexity of the specification edit, on the other side, would
remain exponential even after tabling.

5 Thinning example: 1/0 knapsack

Given n items, each of weight w; and of value v;, and a knapsack of capacity
K, the goal is to find the subset of items with maximal total value whose total
weight does not exceed K. The naive implementation of this problem constructs
all subsets of items within weight limit and returns the subset with the greatest
value; the size of the powerset of a set of n elements is 2" and therefore the
complexity of this algorithm is exponential in the number of items:

knapsack(W,In,0ut) :- bagof (X,fold(step(W),([],0,0),In,X),Bag),
best (vgeq,Bag,0ut) .

The predicate knapsack(W,X,Y) holds if Y is the optimal way to select items
from the list X within weight W. We adopt a fold to capture the process of
examining all the items one by one. In each step we have two choices: to ignore
this item, or to add it to the bag if the total weight does not exceed our limit.
This is reflected in the 2 premises stepl and step2, respectively:

step(W, (A,X),Y) :- stepl(W,(A,X),Y).

step(W, (A,X),Y) :- step2(W,(A,X),Y).

stepl(_, (_,X),X).

step2(W, (A,X),Y) :- addone(A,X,Y), within(W,Y).

vgeq(A,B) :- value(A,VA), value(B,VB), VA >= VB.

The explicit use of nondeterminism here is suggestive and we consider that the
relations of a logic programming language give us in this case a clear notational
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advantage over conventional functional languages. The predicate addone (A,X,Y)
holds if Y is a partial solution gotten by adding the item A to the partial solution
X. The predicate within(W,Y) holds if the total weight of all the items in list Y
is within the weight limit W.

Since the specification is expressed in terms of fold, we can try to apply
either the thinning or the greedy theorem. Optimally, we would like to try to
use the greedy theorem, since it results in the simplest and the most efficient
algorithm. Unfortunately, step is not monotonic on vgeq. We cannot give up a
selection of items just because it is less valuable than another selection, because
the step might not be able to add it to the partially filled knapsack due to
overflow. However, we can identify a sub-relation q of value such that step is
monotonic on a converse of q. If a selection of items is not only less valuable,
but also heavier than another selection, then this choice of items is definitely
not leading to the optimal solution. Given an auxiliary predicate wleq which is
true if the weight of its first argument is less than or equal to that of its second
argument, we define q simply as a conjunction:

q(A,B) :- vgeq(A,B), wleq(A,B).

The proof that step is monotonic on q° follows directly from the definition of
step. If q°(4, B) holds, then A has smaller value and greater weight than B. Given
a partial solution X, we can always find a way to use step to extend it with these
two items so that the resulting solutions, say XA and XB, are related by q° (XA, XB),
i.e. so that the solution resulting from the less valuable and heavier item will
also be less valuable and heavier.

We now know that we can apply the thinning theorem. Actually, a special
form of this theorem, known as the Binary Thinning Theorem can be applied in
this case, because the definition of step has only two alternatives. This theorem
states that under the conditions described above, we can derive the following
program from our knapsack specification:

knapsack2(W,In,0ut) :- fold(step3(W),[([],0,0)],In,List),
head(List,Out).

step3(W, (A,X),YS) :-
bagof (Y,pow(stepl (W), (A,X),Y),Bagl),
bagof (Y,pow(step2(W), (A,X),Y) ,Bag2),
merge (vgeq,Bagl,Bag2,Bag),
thin(q,Bag,YS).

Instead of referring to a theorem not presented here, we could have used simple
algebraic calculations to derive this program from the code resulting from the
original thinning theorem in a few steps. The sketch of the main steps in this
proof is as follows. First, best r is refined by a composition of predicates sort r°
and head, since taking the first element of the list sorted in reverse order of r
gives the optimal element. Then, the fusion theorem is used to push sort into
the fold, and the conditions of the fusion theorem are used to calculate the
composition of predicates bagof, merge and thin used in the code above.
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Let n be the number of items, and w their total weight. As discussed earlier,
the time complexity of the specification is O(2"). The derived program computes
step3 n times, once for each item in the input list. The size of the bag in bagof
is in this case bounded by the the total weight w because for each weight the
bag contains at most one element, and thin and merge are easily implemented
such that they are linear in the length of the input lists, so the time complexity
of the derived program is O(n * w).

This problem is traditionally solved by tabling, where one builds a table
containing a row for each item and a column for each weight, up to the total
sum of the weights of all items. In each entry the best possible value within
the given subset of items and the given weight is recorded. Since the number of
entries is the product of the number of items and the total weight, the running
time becomes polynomial, so the complexities of the tabled program and our
program are comparable. However, unlike the tabling program, our program
also works for non-integer weights and values, but in that case the running time
becomes exponential.

6 Greedy example: minimal tardiness

The minimum tardiness problem is a scheduling problem from Operations Re-
search. Given a bag of jobs, it is required to find some scheduling of it, that
is, some permutation of the bag, that minimises the worst penalty incurred if
the scheduled jobs are not completed in their due time. Each job J is associated
with three quantities: the completion time ct(J,C), determining how long it
takes to complete the job; the due time dt(J,D), determining the latest time
before which the job must be completed; and a weighting wt (J,W), measuring
the importance of the job.

Given the predicates bagify(X,In), which holds if X is some permutation
of the bag In, and costleq(A,B), which holds if the schedule A has a cost less
than or equal to the schedule B, the scheduling problem sche can be specified
as:

sche(In,0Out) :- bagof(X,bagify(X,In),Bag),
best (costleq,Bag,0ut).

We can implement bagify using unfold with the auxiliary predicate bcons.
In one direction, bcons adds an item A to a bag X; used in the reverse way, it
nondeterministically picks an arbitrary item from the bag and pairs it with the
rest of the bag. With unfold, it can be used to generate all the permutations
for a bag. The predicate costleq is as expected:

bagify(Y,X) :- unfold(bcons,[],Y,X).

bcons ((A,X), [AIX]).
bcons((B, [AX]),[AlY]) :- bcons((B,X),Y).

costleq(X,Y) :- cost(X,CX), cost(Y,CY), CX =< CY.
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The cost of a scheduling is the maximum penalty of any scheduled job. The
relation penalty((J,X),P) below denotes that the penalty P is incurred when
the job J is performed after some jobs X. Notice that in this example schedules
should be read backwards, i.e. the last job is written at the head of the list.
If a job is completed before its due time, according to the definition below its
assigned penalty is negative, but since we only need to be concerned with the
maximum penalty, we choose to ignore negative penalties in the definition of
cost. To this end we use the predicate bmax which simply relates the maximum
of its first and second arguments to the third. Given a predicate totaltime
which calculates the time taken to complete all the jobs in X by summing up
their completion time, the definitions of penalty and cost are:

penalty((J,X),P) :- ct(J,C), wt(J,W), dt(J,D),
totaltime(X,TT), P is (TT+C-D)*W.

cost([],0).
cost([JIX],C) :- penalty((J,X),Cl), cost(X,C2), bmax(C1,C2,C).

As the number of permutations of a list is exponential in its length, the above
specification of sche takes exponential time to run. Fortunately, the two condi-
tions of the greedy theorem hold for this specification, so we can derive a greedy
algorithm for this problem. We give an informal argument for their validity be-
low, and a formal, calculational proof can be found in [1].

The monotonicity condition states that if the cost of a scheduling X is less
than or equal to the cost of scheduling Y, attaching job J to both of them does
not change the ordering. In this example we find the weaker version (4) easier
to prove. Given a job J, schedules S1, S2, and a bag B, we claim that:

(3B. bagify(S1,B) A bagify(S2,B)) A costleq(S1,S52)
= costleq([J|S1],[J|S2])

The premise 3B. bagify(S1,B) A bagify(S2,B), also called the context, says that
both S1 and S2 are schedulings of the same bag of jobs B. For any permutation
of a bag of jobs B, i.e. any schedule resulting form B, the total completion time
must be the same. Therefore also adding the same job to both schedules results
in a same completion time. But the penalty of [J|S1] only depends on the weight
of J and the total completion time of S1, so the penalties for doing J after S1 and
S2 are the same. Since the cost of a scheduling is defined to be the maximum
penalty, the monotonicity condition trivially holds.

Proving the greedy condition is trickier, and again we chose to prove the
weaker version (5). We need to invent an ordering which will help us to choose
the best job to pick in each stage. Formally, we need to find an ordering q such
that, for jobs J1, J2, bags B1, B2, B and schedules S1, S2, we can prove:

(3B. becons((J1,B1),B) A beons((J2,B2),B))
A q((J1,B1),(J2,B2)) A bagify(S2,B2))
= 3S1. bagify(S1,B1) A costleq([J1|S1],[J2|S2])
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We claim that the ordering penaltyleq is the right choice for q, that is, that in
each step we only need to follow the decomposition with the least penalty job:

penaltyleq(X,Y) :- penalty(X,PX), penalty(Y,PY), PX =< PY.

The context of the greedy condition states that (J1,B1) and (J2,B2) are decom-
positions of the same bag B. Further, the premise penaltyleq((J1,B1),(J2,B2))
means that the job J1 after any scheduling of Bl incurs less penalty than the
job J2 after any scheduling of B2. Then, we argue that for any scheduling S2 of
the bag B2, there must exist some way to construct a schedule S1 out of the bag
B1, such that the total schedule [J1|S1] has lower cost than the schedule [J2[S2].

The argument is as follows. Remember that the cost of [J1|S1] is the maxi-
mum of the cost of S1 and the penalty of J1. Regarding the cost of S1, notice
first that inserting a job into a schedule either keeps the total schedule cost the
same or increases it. Because both [J1|S1] and [J2|S2] are schedulings of the
same bag B, we can chose the schedule S1 to be the same as schedule [J2|S2]
without the job J1; then the cost of S1 must be less than or equal to the cost of
[J2|S2]. Regarding the penalty of J1 after S1, by the premise we know that it is
less than or equal to the penalty of J2 after S2.

And then, through a direct application of the greedy theorem, we derive:

sche2([1,[1).
sche2(B,[J1]S1]) :- bagof (X,bcons(X,B) ,Bag),
best (penaltyleq,Bag, (J1,B1)), sche2(B1,S1).

The complexity of this is cubic in n, since there are totally n recursive calls to
sche2, in each call we need to examine among a linear number of decompositions
to pick the one with least penalty, and the calculation of penalty also takes linear
time (to sum up the completion time). We could have refined the data structure
such that computing the penalty takes constant time, but we keep the code in
this form to emphasise the structure of the program described in the theorem.

7 Conclusion

Following [1], in this paper we propose an alternative approach to optimisation
problems in logic programming. While the traditional approach views dynamic
programming and greedy algorithms as separate and unrelated programming
styles, the approach taken here relates them to the same specification and thereby
also makes clear the differences between the two algorithm strategies. Further,
this approach also makes it easier to derive the efficient algorithms from the
common specification, thus achieving two things: helping the programmer to
write clear and efficient code and making him aware of the algorithmical issues
at hand. Declarative algorithm design techniques have been an important topic
in functional programming; we believe that it is important to translate some of
those results into the setting of logic programs.

Traditional tabulation methods have been successfully used to solve dynamic
programming problems in logic programming: examples of tabular logic pro-
gramming systems include XSB [10], DyALog [12], and B-Prolog [13]. There
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is an alternative approach, advocated by Clocksin in [3], where recomputation
is avoided by using data-flow analysis at compile time; this approach is im-
plemented for logic programming in [2,7]. However, their focus in not on the
algorithms; ours is. Our aim in this paper was to introduce, through three ex-
amples, an algebraic approach to a classification of some optimisation algorithms
and to their derivation. We have not aimed for a thorough semantic treatment
here, although that may be a topic for further research.

The examples presented here have thought us a lesson about the expressiv-
ity of the two programming styles. We would argue that these problems make
a good case for functional logic programming languages, as we found that we
needed the best of both worlds for a simple and clear presentation. The exam-
ples and the theorems required relations, which we found in logic programming.
Non-determinism comes naturally in logic programs, and need not be simulated
as in functional code, and the predicate bagof and the use of logical variables
were a big convenience. On the other hand, higher-order functions are essential
for the derivations, and we find that the call notation is somewhat cumber-
some. We missed currying. Types would have made the theorems more intuitive,
because many of our predicates use sets with non-trivial structure. In summary,
a language that incorporates these features would be the perfect tool for declara-
tive algorithm derivations. There exist several good candidates, such as Mercury,
Curry, Oz or Escher, but one does not even need to go that far: we have earlier
presented a simple embedding [11] of logic programs into lazy functional ones,
which would add all the relational features to, say, Haskell, for a cost of a few
dozen lines of code. Even bagof comes almost for free in that setting.

The three theorems in this paper are presented in specialised forms for lists.
The class of problems we talked about in this paper either consumes an input
list or produces a list as its output. The more general form can be found in [1],
where an optimisation problem is represented as fold and unfold for any initial
data-type. However, not all dynamic programming or greedy algorithms can be
expressed in terms of fold and unfold. [5] generalises the model further to cover
most dynamic programming or greedy problems. The price, however, is that it
is too abstract to guide program transformation.
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A Appendix: General definitions

fold(_,E,[]1,E).
fo0ld(P,E,[A]X],B) :-
fold(P,E,X,B1), call(P,(A,B1),B).

unfold(_,E,[],E).
unfold(P,E,[A|X],B) :-
call(p, (A,B1),B), unfold(P,E,X,B1).

best (_, [A],A).
best (R, [A,B|X],C) :- call(R,A,B), best(R,[AIX],C).
best(R,[_,B|X],C) :- call(R,A,B), best(R,[B|X],C).

onebest (_, [A],A).
onebest (R, [A,BIX],C) :- call(R,A,B), !, onebest(R,[AlX],C).
onebest (R, [_,BIX],C) :- onebest(R,[BI|X],C).

merge (_, [1,X,X).

merge (_,X, [1,X).

merge(R, [A[X],[BIY],[AlZ]) :- call(R,A,B),!,merge(R,X, [BIY],Z).
merge(R, [A[X],[BIY],[BIZ]) :- merge(R,[AlX],Y,Z).

thin(_, [1,[1).
thin(R, [AIX],Y) :-
thin(R,X,Y1), bump(R,A,Y1,Y).

bump (_,A, [1,[A]).
bump (R, A, [BIX],Y) :-

call(R,A,B) -> Y = [A[|X] ;
call(R,B,A) -> Y = [B|X] ;
Y = [A,B[X].

consmap(_, [1,[1).
consmap (P, [(A,X) |Y], [[AINewX] |NewY]) :-
call(P,X,NewX), consmap(P,Y,NewY).

pow(P, (A,XS),Y) :-
member (X,XS),call(P, (A,X),Y).

head([A]|_]1,A).

bmax(X,Y,X) :-
bmax(X,Y,Y) :-

>=Y.

X
X<Y.
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B Appendix: definitions for string edit
%% the input strings (S1,S2) are given as character lists
%% Problem specification

edit((S1,S82),0ut) :-
bagof (X,unfold(step, ([1,[]),X, (S1,S2)) ,Bag),
best (1leq, Bag, Out).

step(((cpy,A), (X,Y)), (fal1x],[a1Y1)).
step(((del,n), (X,[1)), ([A1XT,I1)).
step(((del,A), (X, [BIY1)), ([AIX],[BIY])).
step(((ins,B), ([1,Y)), ([1,[BIYD).
step(((ins,B), ([AIX],Y)), ([AIX],[BIY])).

lleq(X,Y) :- length(X,M), length(Y,N), M =< N.
%% Refined dynamic programming algorithm
edit2(([1,[1),[1).
edit2((S1,82),0ut) :-

bagof ((A,X), step((A,X),(51,S2)), Bag),

consmap (edit2,Bag,Bagl),
best (1leq,Bagl,Out).

C Appendix: definitions for 1/0 knapsack

17

%% items should be declared in the form item(Name, Value, Weight).

%% Problem specification

knapsack(W,In,Out) :-
bagof (X,fold(step(W),([]1,0,0),In,X),Bag),
best (vgeq,Bag,Out) .

step(W, (A,X),Y) :- stepl(W,(A,X),Y).

step(W, (A,X),Y) :- step2(W, (A,X),Y).

stepl(_, (_,X),X).

step2(W, (A,X),Y) :- addone(A,X,Y), within(W,Y).

addone (A, (NS,VS1,WS1), ([A|NS],VS2,WS2)) :-
item(A,V,W), VS2 is V + VS1, WS2 is W + WS1.

%% The refined thinning algorithm
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knapsack2(W,In,Qut) :-
fold(step3(W),[([1,0,0)],In,List),
head(List,0Out).

step3(W, (A,X),YS) :-
bagof (Y,pow(stepl (W), (A,X),Y),Bagl),
bagof (Y,pow(step2(W), (A,X),Y),Bag2),
merge (vgeq,Bagl,Bag2,Bag),
thin(q,Bag,YS).

%% Auxilary functions for problem specification
within(W,X) :- weight(X,WX), W >= WX.

value((_,VS,_),VS).
weight ((_,_,WS),WS).

vgeq(A,B) :-

value(A,VA), value(B,VB), VA >= VB.
wleq(A,B) :-

weight (A,WA), weight(B,WB), WA =< WB.
q(A,B) :-

vgeq(A,B), wleq(A,B).

D Appendix: definitions for minimal tardiness

%% jobs should be declared in the form job(Name, CT, DT, WT).
%% Problem Specification
sche(In,0ut) :-

bagof (X,bagify(X,In),Bag),

best (costleq,Bag,0ut).

bagify(Y,X) :- unfold(bcons,[],Y,X).

bcons((A,X), [AIX]).
bcons((B, [AIX]), [AIY]) :- bcons((B,X),Y).

%% The refined greedy algorithm.

sche2([1,[1).
sche2(B,[J11S1]) :-
bagof ((A,X), bcons((A,X),B), Bag),
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onebest (penaltyleq,Bag, (J1,B1)),
sche2(B1,S1).

%% Auxilary functions for problem specification

ct(J,C) :- job(J,C,_,_).
dt(J,D) :- job(J,_,D,_).
Wt(J,w) e jOb(J,_,_,W)-

penalty((J,X),P) :-
ct(J,C), wt(J,wW),dt(J,D),
totaltime(X,TT),
P is (TT+C-D)*W.

totaltime([]1,0).
totaltime([JIX],T) :-
totaltime(X,T1), ct(J,T2), T is T1+T2.

cost([]1,0).
cost([JIX]1,C) :-

penalty((J,X),C1), cost(X,C2), bmax(C1,C2,C).

costleq(X,Y) :-

cost (X,CX), cost(Y,CY), CX =< CY.
penaltyleq(X,Y) :-

penalty(X,PX), penalty(Y,PY), PX =< PY.
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